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TECHNICAL MEMORANDUM X- 53365 

BOUNDARY VALUE PROBLEMS ASSOCIATED WITH OPTIMIZATION THEORY 

SUMMARY 

Optimization theory is applied to the physics of trajectory problems to 
yield a boundary value formulation. Three practical numerical methods for 
obtaizizg solutions t9 ?mur,dary r7alue pr&!err,s are d i s c ~ s s e d ,  md a debiled 

is included. Xumericd methods are needed because the zpplication of optimi- 
zation theory to trajectory problems generally results i n  nonlinear differential 
equations connecting the boundary conditions that are not all specified at the 
same value of the independent variable. The methods discussed are adaptable 
to the solution of boundary value problems other than the ones associated with 
trajectory problems o r  optimization theory. 

e,xp12n2tinr? c!f the zpplicatin-? c!f the mest efficient methnd tc! 2 92mnl- nl.nhlem r-- r-------- 

INTRODUCTION 

The calculation of trajectories o r  flight paths for  rocket-powered vehicles 
and projectiles has long been of interest to mathematicians, physicists, and 
engineers. With the advent of modern steerable rocket-powered vehicles the 
problem has become especially interesting because of the multiplicity of paths 
that can occur. Obviously, for a particular vehicle, there should be some path 
that allows the attainment of a desired destination most economically. M o r e  
generally, the vehicle must be steered so that it achieves a certain mission in 
an optimum fashion, where optimum usually means most economically although 
other considerations may be added to the definition. 
optimum path can be accomplished by the application of optimization theory 
to the physics of the problem. The next section of this report wi l l  be concerned 
with a n  explanation of this  procedure with the aid of a simple example. 

The determination of an 
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GENERAL DISCUSSION 

Formulation of the Boundary Value Problem 

From elementary physics it is known that a force acting on a point mass  
produces an acceleration. Locate the force and point mass  in a two-dimensional 
Cartesian coordinate system with its origin at the center of a gravitational field 
and the most simple mathematical approximation to the motion of a rocket- 
powered vehicle is obtained. To be more specific the following diagram is used. 

Y Y 

X 

X 

The diagram aids  in  the expression of the differential equations of motion. 

gx 
? = (F /m)  s in  x - 

= ( F / m )  cos x - g  
Y 

The equations a r e  the sums of the accelerations in the x and y directions; no 
aerodynamic accelerations a r e  considered. F is assumed to remain constant 
for the duration of the powered flight, and the mass  of the rocket is assumed to 
diminish at a constant ra te  (i. e., fuel is burned a t  a constant rate). Then, 
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where h is the constant ra te  of change of mass  with respect to time. Also, 
the accelerations caused by gravity can be expressed as functions of the position 
of the vehicle because gravity fields are  usually assumed to be potential fields. 
The potential p e r  unit mass  outside a large spherical mass  is given by the ex- 
p re s  sion 

The preceding relationships define all of the expressions in  the equations 
for  Z and except the angle x. Chi (x) is called the steering angle o r  the control 
angle, and it is to be determined at every instant of the powered flight so that 
the thrust  ( F )  will  be pointed in an  optimum direction to minimize some specified 
performance parameter. If a steering angle program x (t) and starting condi- 
tions (xg, yo, kOy $o, to) are given, then the equations of motion (Y and y )  can 
be integrated numerically t o  describe the flight path; and x( t) , y (  t) , <( t) , j r (  t) are 
determined and tabulated at intervals of time. 
integrals of the equations of motion. 

The symbols 2 and are the first 

Because many different steering angle programs could be specified for 
this example, the problem i s  to find 3 p:irticular program that minimizes the 
fuel consumed to move the vehicle from the starting conditions to the desired 
end conditions. For example, if  the mission is to achieve a circular orbit at a 
specified altitude ( R  ) , the following conditions must be satisfied at the termi- 
nation of the thrusting period for  the rocket-powered vehicle: 

f 

0 = & + y $  I 

or  G , = ~ + Y ~ - R ~  = o  
f 
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The second expression ( v  = 

by gravity to the centrifugal force,  due to the rocket's velocity. 
pression states that the velocity vector must be perpendicular to the radius 
vector (i. e. , their  dot product is zero) .  

,E ) is determined by equating the force caused fJ., 
The third ex- 

A more abstract  notation wi l l  now be used for  convenience in explaining 
the conditions that must be satisfied by the optimum steering angle program. 
The differential equations of motion are written in the following first-order form: 

k. = f . ( Z ,  Ti, t) 
1 1  

where 
i = 1 , 2 , * * * , n  
x =  xi, x2, , x - (state variables) 

(control variables) . 
n - u =  ui, u2, " ' , U r  

For the example problem the substitutions required a re :  

xi = x 
x2 = Y 
x3 = x 
x4 = y 
x5 = m 

and u1 = x 

x 5 = - m  . 
The quantity to be optimized (maximized o r  minimized) is written as follows: 

n 
s = CiXi'tf' 

i=i 
where the c. 's  a r e  a rb i t ra ry  constants and t is the time at which the thrust  is 

1 f 
terminated and the mission conditions are to be satisfied. 
4 
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For  the example problem, choose 

c1 = q = c3 = c4 = 0, and c5 = 1 . 
Then S = m( tf) and a maximization of S will  cause the fuel used to be a minimum. 
Also, the starting conditions and mission conditions a r e  written in a functional 
form: 

Fa (Zo, to) = 0 , 

where Xo = (x,’, x20, - 0 .  , xii 0 

1l = 1,2,. . . ,k 5 n + i  . 
G (W t ) = O .  p f ’  f 

f f  f 
n where Xf = ( x i ,  x2 , * * * , x  ) 

For  the example system of differential equations, the functional form of 
the boundary conditions can be written explicitly. 

F, = ~5 (to) - mo= 0 
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Now the flight path optimization problem can be stated completely in  the 
more abstract notation. The statement of the problem is as follows: Determine 
a E(t) that satisfies the system of differential equations 

- -  k. = f. (x ,  u, t) i = 1 , 2 , * * *  , n  

x =xi ,  x2, , x 
1 1  

- 
n 

- 
u = u1, u2, , I1 r 

with boundary conditions 

G (TI , tf) = 0 p = 1 , 2 , * . * , m  i n + 1 
P f  

and that maximizes o r  minimizes the quantity 
n 

i= 1 
s = ci X i ( t f )  . 

To determine a u(t) that satisfies the problem statement, an  adjoint 
system of differential equations must be defined 

i =  1 , 2 , * - * , n  
j = 1 , 2 , - * * , n  . 

Now the total system of differential equations (k. and X .) can be integra- 
(xio, hio, and to) l 

ed numerically to yield x.( t) and h.( t) if  the initial conditions 

are known and a steering function \( t)  
optimum steering functions \( t)  

J J  

1 1 

is specified in some manner. The 
can be specified by defining 

n 

j = i  
H = h.  f.(x, T,t) . 

Then another necessary condition to be satisfied for a minimization 
(maximization) of the quantity S is that the function H be a maximum (minimum) 
with respect to u at  every to 5 t 5 t Actually, the maximization or minimiza- f '  

a H  tion of H usually allows the relations - 
k 

give a steering function u that depends on the xi's and h.'s at every to 5 t 5 tf. k 1 

= 0 ( k  = i , 2 , .  . . , r )  to  be solved to  a u  
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Also, the second order  te rms  in the series expansion for H in te rms  of \ about 

the % that makes the first partials zero must be examined to  assure  a maximi- 
zation ur minimization of H with respect t o  u 

condition which requires that the eigenvalues or the principle minors of the 
matrix of second partial derivatives of H with respect to % be all positive for 

H a minimum and alternate in signs (starting with a negative) for H a maximum. 
The example problem in Appendix II shows how this condition can be satisfied 
for two control variables. 

This examination results in a k' 

The fin!-! necessary ronrlitinns to he rlisriissm-l are concerned with the 
boundary conditions. The x.O, 
relationships: 

to, and t are chosen to satisfy the following 
1 1 )  f 

G (x t ) = O  p f' f 

The boundary conditions a r e  actually only n + i independent relationships 
in x h and t at to and t because the multipliers p and p can be elimi- 

nated by using 1 of the n + 1 + i relations a t  to to solve for the p ' s  and m 

of the n + m + i relations at t to solve for the p Is. When the p ' s  and p ' s  

are eliminated, the necessary conditions to be satisfied by the optimization 
problem can be written in  a more compact system of equations 

i' i' f CY P 
CY 

f P a P 

aH x. = - 
1 a +  i = 1,2;**,n 
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aH 
0 s  - 

n 

i= I 
H a maximum for  a minimization of s = c. x. (tf) 

1 1  8 

and n 
H a minimum for  a maximization of s = ci xi (t,) 

i= i 
with boundary conditions 

D.(To, ho, b, to) = 0 j = i , 2 , * * * , n +  i 
J 

- 
E . ( Z f , h f ,  5 t ) = O  . J f '  f 

A derivation of the preceeding necessary conditions is given in Appendix I. 

The next section of this report will be concerned with three of the numer- - 
ical techniques that may be used to determine the go, A,, to, and t that will 
satisfy the 2n + 2 relations D and E 

f 
j '  j 

Methods for  Solution . 

Newton's Method with Numerical Derivatives. -The simplest and most 

AiO, to ,  and t on the D. and 

This is done by computing what i s  called a tr ial  with estimated 

straightforward method of satisfying the Dj and E j  relations is to evaluate 
numerically the effects of small changes in x 

E j  relations. 
values for the unknowns x 

will not be zero, but i f  the unknowns x and h are changed, small amounts i o  io 
one at a time, the changes can be used to determine the correct  values for x io' 
hiO, to ,  and t The initial trials and the 2n small changes in the unknowns 

allow a numerical determination of the partial derivative of D. and E 
spect to x and h 

io' f J 

t o ,  and t Naturally the D and E relations 
io' 3 0 '  f '  j j 

f '  
with re- 

J j 
i 0' io 

f i e ,  and Ee at to and t be To show how this can be done let D , E j  , 

the symbols used to denote the values of D in the 

A x l o ,  at to and t be the symbols used trial computation. Then le t  DAxioand E 

to denote the values of D. and E.  at to and t in the computation of the tr ial  

e e  
j j j 

j y  J J f 

f 
E j ,  D., and i- at to and t 

f j j 

J J f 
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associated with the small  change Axlo in the single unknown xl0. This allows 
the following expressions to b e  written: 

. 

aD.(to) aE . ( t  ) aD.(to) aE.( t  ) 
J a , and 4 can The other partial eerivatives 7 
io 

be determined by s imilar  independent small  changes in the x D.( t& 

and E. (to) are also computed for the estimated values of the unknowns x io' 'io' 
to, and t 

ah  ahiO io ' ax ' io OX 

and A i0 io' J 

I 

f '  

Newton's iteration formula can then be used in the following form: 

This  formula is simply the linear te rms  of a Taylor Ser ies  expansion in  the 
2n + 2 variables x f '  AiO, t o ,  and t io' 

Solving the matrix equation for Ax io' Ahi0, hto, and A t  f gives the 

corrections that are needed fo r  another tr ial .  

9 



The entire process can now be repeated with the preceding solution as new 
to ,  and t Convergence of the process to values io' 'io' f '  

io' ' i o 7  f j I 

estimated values for x 

of x to, and t that yields zero values for  D and E.  can be greatly en- 

De 
j 

e 
j 

hanced by a simple modification. Instead of using zero in Newton's formula, 
Del 

the quantity K 

At become f 

I is used. Then the expressions for  Ax Ahi0, A to ,  and io' 

"io 

Atf J-- aEj(  tf) aEj ( t f )  
0 , ke (tf) 

ax ' "io ' I io  

-1 

The constant K must be chosen in the range 0 5 K < 1. It is usually chosen to 
rD:i 

to be zero unless the vector is not decreased on a particular iteration I E".I L jJ 
cycle. Then K can be increased as close to one a s  i s  necessary to a s su re  that 

the computed values of 4 x  4hi0, At,, and At produce a decrease in 
io '  f 

Another modification to this procedure is called the Secant method. I t s  
main advantage i s  that i t  does not require 2n integrations of the system of 
differential equations f o r  each iteration cycle. 
only one additional integration of the system of differential equations i s  used to 
modify the partial derivative matrix. A more co-mplete explanation of this pro- 
cedure can be found in Reference 1. 

A f t e r  the first iteration cycle 

Newton's Method with Integrated Partial Derivatives. -The next method 
of solving the boundary value problem also uses Newton's iteration formula, 
but the partial derivative matrix i s  computed in a more accurate and efficient 
manner. A rigorous justification for  the procedure is found in Reference 2 ,  
although most of the steps are intuitively obvious. The method involves chain 
rule differentiation of the boundary conditions. The system of equations which 
results is: 
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1 = 1 , 2 , . - - , n  . 
The only 

The matrices 

from chain rule differentiation of the third equation in the system of equations 

Differentiation yields: 

k] aUmaUk [z] 



Therefore, 

must still be determined. The matr ices  a t  to a r e  determined from the initial 
conditions. 
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I '  The matrices at t are determined by integrating the matrix differential f 
equations obtained by differentiation of the first and second equations of the 
system of equations 

Differ e ntiati on yiei cis : 

determined. Also,  [$] and [ - ]  have already been determined for 

every t,, 5 t i- t 

results at t The desired results at t are values for  the matrices 

therefore the equations can be integrated to yield the desired f; 

f' f [s] [2] , [z] and [z] . These matrices a r e  substituted 
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a E . ( t )  a E . ( t )  
into the formulas for and . Then all of the elements are 

again available for the use of Newton's iteration formula in the following form 
i o  a ?O ax 

- -  
De 

j 

Ee 
j 

The computations for  the partial derivatives can be performed along each 
trial trajectory, and the resul ts  are much more accurate than the numerical 
differentiation procedure used in the first method described for satisfying the 
boundary conditions. The modification to increase the chances for  convergence 
suggested in  the explanation of the first method is still very helpful with the new, 
more accurate partial derivatives. 

Modified Newton-Raphson Operator Method. -The final method to be 
discussed is a modification of the quasilinearization or  Newton-Raphson operator 
method. The modified method is similar to the steepest descent procedure in 
that prespecified control functions are needed to start the iteration cycle, but 
the derivation is such that no backward integration is required. The first step 
in the explanation of the procedure is the linearization of the system of equations 
by using the first-order t e rms  in a Taylor Ser ies  expansion in all the variables 
about the initial trial trajectory, 

x. e -  1 - ke i + ["I a h i a 3  (A?) + [ & ] ( A t )  

xi = Xi e - ["I axis? (A?) - ["](Ah,) &ia hl - ["I a x i a x  ( A x )  

0 e +[a::; m 
a2H 

m au ahl 

m = 1, 2,  ... , r 
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The last equation in the preceding expansions can be solved for A\ and 

the results substituted into the first two equations. Then the first two equations 
can be arranged as a linear system of differential equations with time varying 
rzatrix ccemciects: 

The coefficients A, B, and C a r e  generated along the trial  trajectory using the 
arbitrary guesses for x 

To obtain a general solution to the above linear system of differential equations 

one particular solution ( x p  and A. ) of the entire system must be generated 

by numerical integration and 2n particular solutions to the homogeneous part  

t o ,  t , and the arbitrary control functions \(  t) . io' 'io. f 

P 
1 1 

(i. e., with the Cii and Ci2 terms left off) must be generated. The initial 

conditions for the particular solution to the nonhomogeneous system a r e  chosen 
to be the same as the initial conditions for the trial trajectory. The initial 
conditions for the 2n homogeneous solutions for convenience a r e  chosen as 
follows and written in matrix notation: 

Also 

Each of the columns in  the previous set of matrices is considered to be a set of 
initial conditions to yield the 2n particular solutions to the homogeneous sys- 
tem. All of the numerical integrations can be performed a t  the same time, and 
the general solution is then written- 

15 



The constants K and Ks i n  the previous relations are determined so 
q 

that the general solution will  satisfy the D and E .  boundary conditions. To 

do this the boundary conditions are also expanded in  a Taylor Series with only 
the first-order t e rms  retained. 

j I 

This yields the following expressions: 

Again the third equation in the system of equations is used to obtain A y ,  in  

t e rms  of Ax. and Ah.. Then the general solutions for  x. (t) and A. ( t )  evalu- 

ated at to and t a r e  substituted into the Ax. and Ahi expressions, and the 

boundary conditions become 2n + 2 linear equations in  the unknowns K 
At,, andAt  , which a r e  easily solved. 

1 1 1 1 

f 1 

q' Ks' 
f 

Ks, At,, and At , the original 

system of equation and the linear system with time varying coefficients a r e  r e -  
integrated. The initial conditions for the original system of equations remain 
the same, but the initial conditions for the l inear  system a r e  given by evaluating 
the general solutions for xi(t) and A i ( t )  at to. This yields 

f Using the newly computed values for  K 
q' 
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= xe(t0) + K 
1 q 

= Ae(t.01 + Ks 

xi ( t o )  new 

hi ( t o )  new 

new 

tf new 

1 

e 

e + Atf 

= t o  + At0 

= tf 

During the reintegration process the third equation of the system of equations 
is again used to compute A%, which is added to the old control function to 

does not converge until both the boundary cotiditiolls are satisfied and 
ilie iie-w- ciiiiiriil fuiiciioii fur Gie iiex.? iL&=&iGTL cycle. This piGce&Grz 

- -  aH - 0 over the interval to I t 5 tf 
a% 

To increase the'chances of convergence the process can be made to c reep  

and - aH be zero on a particular toward a solution by not requiring that D., E 

tr ial ,  but only that it be smaller than the previous t r ia l  (i. e., ze ro  in the Taylor 
J j' a\ 

Series expansions for D E.,  and - aH is replaced by K !I and k [g] 
where 0 5 K < I and 0 5 k < I). 

j' J auk 
This is the  same idea that w a s  suggested for  

the f i r s t  and second methods of satisfying the boundary conditions. 

Computational Considerations 

A l l  three of the preceding methods require that the units of length, mass,  
and time be adjusted o r  scaled such that each of the variables has the same order  
of magnitude. This scaling is needed mainly to retain good numerical precision 
when the matrix inverse in Newton's formula is taken o r  when the system of 
linear equations is solved i n  the t h i r d  method. For trajectory optimization prob- 
lems  this is easily accomplished as is shown in the Computational Procedure 
Section of Appendix IL 

17 



None of the methods is sensitive to the choice of the quantities that must 
be estimated to begin the iteration cycle, except the first method. If the Ax 
values estimated for the numerical determination of the partial derivatives are 
not chosen properly, this method may not converge. The second method has 
been found to converge for  almost any values of the quantities that must be esti- 
mated, except all zeroes. For example a heliocentric t ransfer  from the Earth 's  
orbit  to the orbit of Mars  converged in only 10 iterations with very crude guesses 
for the initial conditions. In Reference 3,  this  same problem with the same 
crude guesses took 13 iterations and the procedure used (which is s imilar  to 
method three) is slightly more complicated to program on a computer. Becausc 
the second method has proven to be so effective, no effort has been made by the 
author to program the third procedure. The explanation of the third procedure 
is included a s  a generalization and extension of the ideas presented in Reference 
3,  and also to point out this method's similarity to the steepest  descent idea. 

Inequality constraints on the control variables can be handled very easily 
by all three methods. When the control variables are on the constraint boundary, 
H is not considered to be a function of the control u; therefore, all of the t e rms  
in  the equations that contain first and higher order  partial derivatives of H with 
respect to u are considered to be zero. To handle discontinuities or  inequality 
constraints on the state variables or functions of the state variables and the 
control variables, modification of the necessary conditions is needed. The modi- 
fications have been developed in  References 4, 5, and 6. A l l  of the modifications 
to the necessary conditions usually require that additional boundary conditions 
be satisfied at other than the first and last points. Because the three methods 
discussed for satisfying boundary conditions have been formulated for  two points 
(the first and last) , the extension to three o r  more points should be obvious. 
Also, because the iterations on the boundary conditions are performed at both 
ends of the trajectory, all three of the methods can be integrated backward o r  
forward. The backward integration is helpful when the final conditions are 
extremely sensitive to changes in the initial conditions, but not "vice versa.  I '  

C ON C L USIONS 

Practical  methods for solving boundary value problems associated with 
the optimization of t ra jector ies  have been discussed. Actual experience with 
the construction of computer programs and the numerical resul ts  of computer 
programs has indicated that the second method described is usually the most 
effective for solving boundary value problems. Efficient use of the new IBM 
FORMAC computer language, which enables the computer to obtain functional 
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forms  for the partial derivatives of functions with respect to the variables that 
appear in the function, wi l l  also assure that the second method becomes an 
easily programmed and economical computer program. More about the IBM 
FORMAC computer language can be found in  Reference 7. 

The detailed application of the second method to a simple trajectory 
optimization problem is outlined i n  Appendix II. Because the theoretical formu- 
lation for more difficult problems is also available, subsequent efforts will be 
directed toward the application of the second method to these problems to gener- 
ate additional computer programs. 
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APPENDIX I 
DERIVATION O F  THE NECESSARY CONDITIONS 

FOR THE OPTIMIZATION OF S 

The problem is to determine a E(t) that satisfies the system of differ- 
e ntial equations 

ic. 1 = f i ( X ' U ' t )  

with boundary conditions 

Fa!(XOYt,)  = 0 

G ( x  t )  = 0 p = 1 , 2 , * * - , m  5 n +  I 

a! = 1 , 2 , * - .  ,1 5 n +  I 

p f' f 

and that maximizes o r  minimizes the quantity 

s = ci X i ( t f )  

i= 1 

Because the x.'s a r e  assumed to be continuous, S can be rewritten in  integral 
form. 1 

To examine the effects of the constraints on the maximization of 
function S' is defined. 

S, a new 

n 1 m 

A minimization of S' is equivalent to a minimization of S, if  the boundary 
conditions and the system of differential equations a r e  also satisfied. Assuming 
a solution to the problem statement exists,  the optimum S' can be written as 
follow s : 

20 



The bar  over all of the variables means that they have their 
Now a variation in all of the variables is written as follows: 

n 

optimum value. 

1 

m 

In the preceding expression the variations for t imes greater than t and less 
f than to are taken from the values at to and tf. For  example 

- 

- 
Ax(t) = x(t)  - ;(to) t 5 t o  

- 
Ax(t) = x( t )  - x ( t f )  t tf , etc. 

Subtracting sf from sf + A S  yields ASf. 
- 
t o  n 

to+Ato i=l i=l 
AS'= S_ { ci(Ei+42.) + (~.+AA.)[(%.+Ak)-f.(x+Ax,u+Au,t)] 

1 1 1 1  1 1  
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If AS? is greater than zero for  all the variations, SI will  be a minimum and 
'Vice versa." To see how ASt can be made greater than o r  less than zero the 
following steps a r e  taken. The expression for  AST is simplified by assuming 
that all of the variations considered are small. This allows Taylor Series 
expansions to be used, and all second-order te rms  can then be neglected. The 
following expansions are made with only l inear te rms  of the Taylor Series re-  
tained. The symbol 6 means a smaller variation (meaning first-order t e r m s  
a r e  sufficient) than the symbol A .  

f i ( ' i+dx ,  u + A u ,  t) = f . ( x , u + A u , t )  1 + 
1= 1 
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l -  

Substitution into the expression for AS' and elimination of the second-order 
t e r m s  caused by the smaller  variations (denoted by a 6) yield: 

A combination of certain t e r m s  under the integral sign may be integrated by 
par t s  as is shown: 

23 



- J! [ t Ai 6xi] dt . 
to i=i 

Substitution of this expression into 6s’ and further rearrangement yields an 
expression of the form. 

24 



The only way that 6s' can be made greater than or less  than zero  for  either 
positive o r  negative values of the variations (the 6 values) is to make the 
coefficients of all the variations zero. This yields the following necessary 
conditions : 

- -  
G (x t ) = O  p f ' f  

n n 

- -  - 
k. = fi( x, u + Auy t) 

1 

- - 

f 
t o r  t 5 t  

Then the expression for 6s' becomes 
- 

. 
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Now 6s' will be  positive if the variations Au make the variations in  the 
differences of the f .  either zero or negative. 

differences of the f. must be negative for some finite interval in the time period 

to 5 t 5 t This allows bounds to be placed on the control variables. From the f' 
opposite viewpoint, 6s' will  be negative i f  the variations Au make the varia- 
tions in the differences of the fi either zero or positive. The same considera- 

tions hold for bounds on the control variable. If AS' is positive for all small  
variations in  u, then S' is a local minimum with respect to u and "vice 
versa. Defining a new quantity H and combining and rearranging the previous 
results allows the final form of the necessary conditions to be written 

This means the variations in  the 
1 

1 - - . 

- 1  

1 

Then, 

aH - xi= - 
ax. 

1 

Because H must be a maximum or a minimum with respect to u 

aH - = 0, and H a maximum for S a minimum 

H a minimum for S a maximum 

au 

G (x  t ) = O  
B f '  f 
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This development and form for the necessary conditions were chosen 
because they allow the part  of the second variation associated with the control 
functions (i.e. , the maximization or  minimization of H) to be examined and 
satisfied. In reality all of the second order  te rms  in the Taylor Series ex- 
pansions should be retained and examined. Combinations of the second order 
t e rms  would produce quadratic forms,  and all of these would have to  be positive 
o r  negative definite t o  assure  a minimization or  a maximization of S. From a 
computational standpoint , it is impossible to assure  positive o r  negative definite - 
ness  for any but the t e rms  associated with the control functions alone. The 
other te rms  can be examined as a test, but there is no freedom to correct the 
terms if the test  is not satisfied. Therefore, a solution is usually obtained 
satisfying the necessary conditions given, and physical reasoning is used to 
determine if the trajectory is acceptable without resorting to  the extra effort 
necessary to  test for the sufficiency conditions. 

t 

* 
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APPENDIX I1 
APPLICATION OF THE NECESSARY CONDITIONS 

TO A TRAJECTORY PROBLEM 

A simple model for  the equations of motion of a rocket-powered vehicle 
in  three dimensions is given by the following system of differential equations: 

E cos x s i n x  - g=-- F 
m P Y R3 

R = Jx' + $ + z2 

m(t )  = mo - h0( t-to) 

These equations a r e  based on the same assumptions that w e r e  used for  the two- 
dimensional model described in  the first part  of the General Discussion. The 
control variables are x 
respect to the coordinate system that is shown in the diagram below. 

that locate the missile axis o r  thrust with 
and s P 
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, .  

The following substitutions are  made so that the system of differential 
equations will be in the form required for  the application of the necessary con- 
ditions: 

. xi = x 

x2 = j r  . x3 = z 

X4’X 

xs = y 

x 6 = z  

x7 = m 

% = F  

q = x p  
uz = x y  

Then 

f, = xz 

f7 = -&o 

f, = 0 

f6 = x3 

Now H can be written: 
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Then the IBM FORMAC language can be used to obtain fortran expressions for 
part  of the necessary conditions as follows: 

Expressions for the control variables that appear in the k. and X. equa- 
1 l 

tions are obtained by solving the third equation in  the system of equations for  
ui and u,. 

= o = - A, (2) cos ui sin u2 - h3 (2) cos ui cos  u2 aH 
au2 
- 

From the second equation 

This is assuming that (2) and cos ui a r e  not zero, but L 'Hospi ta l ' s  rule can be 

used to show that the expression is still true as both approach zero as a limit. 
From the previous relation 

-A;? sin u2 = 
* J W '  

+& 
cos  l l 2  = - . 

%&=- 

gives: 8H - Substitution of these equations into the equation for 
au1 

hi cos ui + s in  u1 = o 
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A, 

The ambiguities on the signs of sin and cos of ul and u2 can be resolved by 

. Because it is desired to minimize and - examining - a2H 
aU,2 

a2H 
a u t  

- a2H must be negative. The above statements say that S = - m ( t 2  is to be a 
a%2 
minimum. This is equivalent to stating that m( t ) is to  be a maximum. For 

- m ( t  ) to  be a minimum H during the period t,, < t 5 t f  - must be a maximum; 

must be negative at all t imes in the interval and - therefore - 

f 

a2H a2H 

au1 au2 
f *  t o s t s t  

- 3 - sin ul + cos ul - h2 cos 4 + h3 sin u21) -LT) 

= ZR cos ul [ - cos u2 + h3 sin u2]) 
XT 

ZIL will  always be positive. From the physics of the problem it is obvious that 

Also, the positive sign is arbitrari ly chosen for cos u1 
x,) 

. 

will be negative if the following signs a r e  chosen for sin u2 and a2H Then - 
au,2 

cos u2 . 
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A cos u2 = 
m 2  

-13 
sin u2 = 

will  be negative if the following signs a r e  chosen for sin ul. a2H 
aU,2  

Also, - 

A, 
sin ui = 

The preceeding choice of signs make n2 
J ’ A , 2  + A22 + A: 

zero; 
a2H a2H 

i 

a2H a 2H 
therefore H is a maximum because a n d 7  are both negative. With 

%2 

the expressions for the control angles defined, the boundary conditions can now 
be discussed. 

F o r  this problem the boundary conditions at to a r e  assumed to have the 
form shown below: 

Then the transversality conditions become 

32 
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A0 + H(to )  + p9 = 0 

The last equation determines ps , and the other eight p's o r  A ' s  must be 
determined to satisfy the boundary conditions and transversality conditions at 

For  this problem the boundary conditions are assumed to have the form tf* 

GI = q 2 + % 2 + % 2 - R  = 0 
t€ 

tf 
fL  = Y - 2  + Y"2 + Y"2 - \I 2 , r J  
-L --1 --L --a 

G, = XI%+ X 2 % +  ~ 3 %  - (Rv COS'$) = 0 
tf 

The quantities R ', v 

terize a certain orbit where R is the radius, v is the velocity, and Rv cos 9 
is the dot product of and . Then the transversality conditions become 

, and (Rv cos 9)  are desired constants that charac- 
tf - tf tf 

A*(t) = 0 f 

H ( t f )= 0 

This is nine transversality conditions and three boundary conditions for 
a total of twelve conditions that must be satisfied by the eight initial A ' s  o r  p's 
and the three p's a t  t and tf. The three p's at t can be eliminated by 

using three of the transversality conditions to solve for the p's in t e r m s  of 
x's and A's. To do this in an easy manner the following steps a r e  taken: 

f f 
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Vector algebra is used on these two vector equations to eliminate the - -  
three p’s. Crossing the f i r s t  vector equation with xi yields Ed 

Crossing the second vector equation with x5 yields kl 
L -J 

Adding the two resulting equations gives 
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-.Ux L 

- -  :I 
xs 

. 
x3 
4 

P e r f ~ m h g  the cross multi;ip!icaticns yiclds the three desired independent 
scalar equations: 

Now the eight A's or p's at to and t are used to satisfy the follow- f ing nine conditions at  t f' 

E, = qz+ x s 2 +  xs2 - R  = 0 

E, = x:+ - v  = 0 
tf 

tf 
E3 = x ~ x ~ + x ~ % + x ~ x ~ - ( R v c o s ~ )  = 0 

tf 
E, = h 3 ~ 2  - 4x3 + ~ x S  - A& = 0 

r 1 
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The preceeding discussion and the discussion in the main par t  of this 
report  should be sufficient for an understanding of the following computational 
procedure that was used in constructing the actual computer program. 

Computational Procedure 

Preload 

x20 = j ,  (m/sec)  

x30 = i (m/sec)  

x40 = x ( m )  

x: = y ( m )  

1 kg sec  
m x70 = m ( 

) 
kg sec 

m l?n, = ( 

t (sec) f 

Tolerance = . 5  X 

At (sec) for integration 

36 

R cutoff altitude squared (m2) 

v cutoff velocity squared (m2/sec2) 

(Rv cos 8) 

tf 

tf 
(determines path angle at 

tf cutoff) 
K 

, 



Preload Computations 

All input must be scaled 

I -  
1 

Ki = 1.5698587 X lo-' 

K2 = 1.241825 X I O 3  

K3 = 0.16001332 X10-4  

(scales length) 

(scales time) 

( scales weight) 

The preceeding scale factors ..re for  near ear th  tmjectmies, and they 
cause the initial radius ( d \ ~ ~ + % ~ + % ~  ) , the initial mass, and c1 to be unity for 
the test case data given at the end of this computational procedure. 

I 
! '  
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GM = GM (K:) K13 

- 

- - -  

R 2 = R (Kt) 
tf tf 

( R v c o s 4 )  = ( R v c o s 4 )  
tf tf 

Preload Computations for  the Isolation Routine 

Set up the following matrices: b] = [OI 

to 
i (number of rows) = 8 

j (number of columns) = 8 

Suggested Order for  Computing Line "nrr for the Isolation Routine 
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The following equation is to be used with the IBM FORMAC language to 
obtain functional ( fortran) expressions for  the partial derivatives needed for  I 

I 
the subsequent calculations : 

;5. 

+ A3 
(4) cos 9 = 

i = 1 , 2 , * * * , 8  

i = 1 , 2 , - * * , 8  

Construct the following matrices with the IBM FORMAC language: 

k(rows) = 1,2 

l(co1umns) = 1 , 2 , * * * , 8  

k( rows) = 1,2, 
m(co1umns) = 1,2 
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laxi J J 
Then compute: 

i(roWs) = 1,2 ;** ,8  

j(co1umns) = 1 , 2 ; * * , 8  

“3 a t a +  [?I} 
T T 

[+]=[i&] [3] + [e] [+] 
T [+I = axiax [q] - [ -3 [q] - [a+. [ q] 

NOW k X. [q] and [F] are integrated by Runge-Kutta integra- i’ 1 ¶ 

tion to give x Ai¶ [F] and [q] for the next line. This integra- 
i: 

tion is stopped when t = , tf 

A l l  of the following equations a r e  to be computed at the time t = t f on a 

particular trial: 
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I 

! -  

Construct the following matrices o r  vectors using the automatic partial 
differentiation routine: 

R(rows)  = 1 , 2 , * * * , 9  

i (columns) = 1,2 , * - - ,8  

j (columns) = 1,2,...,8 

k (columns) = 1 , 2  

Then compute: 

(A2 s in  ul sin u2 + h3 sin ul cos u2) 
( A 3  cos ul sin u2 - AI sin ul - cos ul cos  u,) 

I ( A 3  cos u1 s in  u2 - A, cos  ul cos u2) 
(h sin u1 sin u2 + A3 sin u1 cos u2) 
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r 1 

1 (13)  4~ =FkmJ-' [h cos ui s in  u2 + hi cos ui cos u2 
hi sin ui cos u2 - Xi cos ui - X3 s in  ui s in  u2 

aER aER aER ki + - aER 
(14) R - -  -[axi] ki +[q]\ + [q] at  

(15)  A E  = G 
Compute I A E ~  = E: + Esz + E92 

(16) ['qs] = [ aER ' ER] 

If lAEJ is 5 tolerance go to converged case run saving A.O (old) and 
I tf (old) .  If not continue: 

Compute [ zqS] in double precision 
-1 - 

E 

and tes t  [zqs] [zqs] = [I1 . 

On the first trial skip the next three statements and go to "now 
a new trial" : 

- 

' n '  i 
- 1  6 

I (i-K+ - K) set K = i. 8 K . If 
I *En -1 

If K >  i set K = i  . 
Now for  a new trial:  

A i 

Atf (new) = tf (old) - K A t 

(new) = Aio (old) - K A A i  

f '  

o r  
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Converged Case Run 

. 

Reintegrate the trajectory with the converged A. (to) and t and compute 
1 f additionally at each At . 

R = 4% 2 +x5 2 +xs2 (il) 

s in  9 = Ji - cos2 9 

9 = arc tan (convert to degrees) r 
ul = arc tan ' (convert to degrees) 

u2 = arc tan sin "-) (convert to degrees) 

sin 

!cos u; 

Pr in t  out at each At: 

(1) On the first s tep of each trial print 

( 2 )  A t  t = t on each trial print all of ( I )  plus the following f 

(3) A t  each At of the converged case run print 
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Data for an Example Trajectory 

t o  = 

xi = 

x, = 

x3 = 

x q =  
x5 = 

x s =  
x7 = 

x8 = 

Fo = 

m o  = 

A,O= 
$0' 

GM - 

A3 = 

A4 = 

A5 = 

= 

A7 = 

AfJ = 

t =  

A t  = 
f 

150.01366 

237 8.9 37 5 

1181.8890 

-1259.8308 

143391.19 

6447134.8 

-40967.611 

6361.8535 

40599.685 

0 . 0  

9.6776706 

.39860160 x ioi5 

1. 0 

1.0 

1. 0 

I. 0 

I. 0 

1. 0 

I. 0 

I. 0 

650 

I. 0 
-6 Tolerance = . 5 x 1 0  

R 2 =  .44193245 x loi4 
tf 

tf 
v 2  = , 59878362 X 108 

( R v c o s 9 )  = 0 

K =  . i  
tf 

. 
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